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This paper provides a self-contained overview of the geometry and dynamics of rela-
tivistic brane models, of the category that includes point particle, string, and membrane
representations for phenomena that can be considered as being confined to a world-
sheet of the corresponding dimension (respectively one, two, and three) in a thin limit
approximation in an ordinary 4-dimensional spacetime background. This category also
includes “brane world” models that treat the observed universe as a 3-brane in 5 or
higher dimensional background. The first sections are concerned with purely kinematic
aspects: it is shown how, to second differential order, the geometry (and in particular
the inner and outer curvature) of a brane worldsheet of arbitrary dimension is describ-
able in terms of the first, second, and third fundamental tensor. The later sections show
how—to lowest order in the thin limit—the evolution of such a brane worldsheet will
always be governed by a simple tensorial equation of motion whose left hand side is the
contraction of the relevant surface stress tensorT̄µν with the (geometrically defined)
second fundamental tensorKµν

ρ , while the right hand side will simply vanish in the
case of free motion and will otherwise be just the orthogonal projection of any external
force density that may happen to act on the brane.

1. INTRODUCTION

This paper is an updated version of the first part of a course originally pre-
sented at a school on “Formation and Interactions of Topological Defects” (Carter,
1995). In preparation for the more specific study of strings in the later sections,
this first part was intended as an introduction to the systematic study, in a classical
relativistic framework, of “branes,” meaning physical models in which the relevant
fields are confined to supporting worldsheets of lower dimension than the back-
ground spacetime. The original version was motivated mainly by applications in
which the background spacetime dimension was only 4, but the approach described
here is particularly effective for the higher dimensional backgrounds that have very
recently become the subject of intensive investigation by cosmological theorists.

1 Contribution to proc. Peyresq 5 meeting (June, 2000): “Quantum spacetime, brane cosmology, and
stochastic effective theories.”

2 D.A.R.C., Observatoire de Paris, 92 Meudon, France.
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Although not entirely new (Dirac, 1962; Howe and Tucker, 1977), the de-
velopment of classical brane dynamics had lingered at a rather immature stage
(compared with the corresponding quantum theory (Ach´ucarroet al., 1987) which
had been stimulated by the rise of “superstring theory”), the main motivation for
relatively recent work (Carter, 1990) on classical relativistic brane theory having
been its application to vacuum defects produced by the Kibble mechanism (Kibble,
1976), particularly when of composite type as in the case of cosmic strings attached
to external domain walls (Vilenkin and Everett, 1982) and of cosmic strings car-
rying internal currents of the kind whose likely existence was first proposed by
Witten (1985) and whose potential cosmological importance, particularly due to
the prolific formation of vortons (Davis and Shellard, 1989a), has only recently be-
gun to be generally recognized (Brandenbergeret al., 1996). However, interest in
the subject has suddenly received a substantial boost from an essentially different
quarter.

Following the recent incorporation of 10-dimensional “superstring theory”
into 11-dimensional “M theory,” the situation has, however, been radically changed
in the last couple of years by an upsurge (Binetruyet al., 2000; Chamblin and
Gibbons, 2000; Chamblinet al., 2000) of interest in what has come has to be
known as “brane world” theory, according to which our observed 4-dimensional
universe is to be considered as some kind of brane within a higher dimensional
background that is known in this context as the “bulk.” Although they are ade-
quate for cases with codimension 1 (which in the “brane world” context means
the most commonly considered case (Bowcocket al., 2000; Langloiset al., 2000;
Maartens, 2000; Mennim and Battye, 2000; Shiromizuet al., 2000) for which the
“bulk” dimension is only 5) traditional methods of analysis have been less satis-
factory for cases with codimension 2 or more. The advantage, for such cases, of
the more efficient formalism presented here has already been decisively demon-
strated within the framework of an ordinary 4-dimensional spacetime background,
notably in the context of divergent self interactions of cosmic strings (Carter
and Battye, 1998) for which previous methods had provided what turned out
to have been misleading results. The superiority of the present approach should
be even more overwhelming for the treatment of “brane world” scenarios in-
volving a “bulk” having 6 dimensions (Gherhgetta and Shaposhnikov, 2000) or
more.

Before the presentation of the generic dynamic laws governing the evolution
of a brane worldsheet (including allowance for the possibility that it may form the
boundary of a higher dimensional brane worldsheet) the first sections of this paper
provide a recapitulation of the essential differential geometric machinery (Carter,
1992a,b) needed for the analysis of a timelike worldsheet of dimensiond say in a
background space time manifold of dimensionn. At this stage no restriction will be
imposed on the curvature of the metric—which will as usual be represented with
respect to local background coordinatesxµ (µ = 0, . . . , n− 1) by its components
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gµν—though it will be postulated to be flat, or at least stationary or conformally
flat, in many of the applications to be discussed later.

2. THE FIRST FUNDAMENTAL TENSOR

The development of geometrical intuition and of computationally efficient
methods for use in string and membrane theory has been hampered by a tradi-
tion of publishing results in untidy, highly gauge dependent, notation (one of the
causes being the undue influence still exercised by Eisenhart’s obsolete treatise
“Riemannian Geometry” (Eisenhart, 1926). For the intermediate steps in particular
calculations it is of course frequently useful and often indispensable to introduce
specifically adapted auxiliary structures, such as curvilinear worldsheet coordi-
natesσ i (i = 0, . . . , d − 1) and the associated bitensorial derivatives

xµ,i = ∂xµ

∂σ i
, (1)

or specially adapted orthonormal frame vectors, consisting of an internal subset of
vectorsιAµ (A = 0, . . . , d − 1) tangential to the worldsheet and an external subset
of vectorsλX

µ (X = 1, . . . , n− d) orthogonal to the worldsheet, as characterized
by

ιA
µιBµ = ηAB, ιA

µλXµ = 0, λX
µλYµ = δXY, (2)

whereηAB is a fixedd-dimensional Minkowski metric and the Kronecker matrix
δXY is a fixed (n− d)-dimensional Cartesian metric. Even in the most recent
literature there are still (under Eisenhart’s uninspiring influence) many examples
of insufficient effort to sort out the messy clutter of indices of different kinds
(Greek or Latin, early or late, small or capital) that arise in this way by grouping
the various contributions into simple tensorially covariant combinations. Another
inconvenient feature of many publications is that results have been left in a form that
depends on some particular gauge choice (such as the conformal gauge for internal
string coordinates) which obscures the relationship with other results concerning
the same system but in a different gauge.

The strategy adopted here (Stachel, 1980) aims at minimizing such problems
(they can never be entirely eliminated) by working as far as possible with a single
kind of tensor index, which must of course be the one that is most fundamental,
namely that of the background coordinates,xµ. Thus, to avoid dependence on
the internal frame indexA (which is lowered and raised by contraction with the
fixed d-dimensional Minkowski metricηAB and its inverseηAB) and on the ex-
ternal frame indexX (which is lowered and raised by contraction with the fixed
(n− d)-dimensional Cartesian metricδXY and its inverseδXY), the separate in-
ternal frame vectorsιAµ and external frame vectorsλX

µ will as far as possible
be eliminated in favor of frame gauge independent combinations such as the unit
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tangentd-vector (i.e., antisymmetric contravariantd-index tensor) with spacetime
components given, for ap-brane withp = d − 1, by

Eµ...σ = (p+ 1)! ι0
[µ . . . ιp

σ ] , (3)

which is useful for many purposes but has the inconvenient feature of being not
strictly tensorial but only pseudo-tensorial (since its sign is dependent on an orien-
tation convention that would be reversed if the ordering of the frame vectors were
subject to an odd permutation) as well as having the property (which is particularly
awkward for higher dimensional applications) that the number of component in-
dices involved is dimension dependent. These inconvenient features can, however,
be avoided in many contexts by following an approach based on what we refer
to as the (first) fundamental tensor of the worldsheet, which is definable as the
(rankd) operator of tangential projection onto the worldsheet. This fundamental
tensor, which we shall denote here byηµν , is given, along with the complementary
(rankn− d) operator⊥µν of projection orthogonal to the world sheet, by

ηµν = ιAµ ιAν , ⊥µν = λX
µ λX

ν . (4)

The same principle (of minimization of the use of auxiliary gauge dependent
reference systems) applies to the avoidance of unnecessary involvement of the
internal coordinate indices which are lowered and raised by contraction with the
induced metric on the worldsheet as given by

γi j = gµνx
µ

,i x
ν

, j , (5)

and with its contravariant inverseγ i j . After being cast (by index raising if nec-
essary) into its contravariant form, any internal coordinate tensor can be directly
projected onto a corresponding background tensor in the manner exemplified by
the intrinsic metric itself, which gives

ηµν = γ i j xµ,i x
ν

, j , (6)

thus providing an alternative (more direct) prescription for the fundamental tensor
that was previously introduced via the use of the internal frame in (4). This approach
also provides a direct prescription for the orthogonal projector that was introduced
via the use of an external frame in (4) but that is also obtainable immediately from
(6) as

⊥µν = gµν − ηµν. (7)

As well as having the separate operator properties

ηµρ η
ρ
ν = ηµν , ⊥µρ⊥ρν = ⊥µν (8)

the tensors defined by (6) and (7) will evidently be related by the conditions

ηµρ⊥ρν = 0= ⊥µρηρν. (9)
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3. THE INNER AND OUTER CURVATURE TENSORS

In so far as we are concerned with tensor fields such as the frame vectors whose
support is confined to thed-dimensional worldsheet, the effect of Riemannian co-
variant differentation∇µ along an arbitrary directions on the background spacetime
will not be well defined, only the corresponding tangentially projected differenti-
ation operation

∇̄µ def= ηνµ∇ν , (10)

being meaningful for them, as for instance in the case of a scalar fieldϕ for
which the tangentially projected gradient is given in terms of internal coordinate
differentiation simply by∇̄µϕ = γ i j xµ,i ϕ, j i .

An irreducible basis for the various possible covariant derivatives of the frame
vectors consists of the internal rotation pseudo-tensorρµ

ν
ρ

and the external rotation
(or “twist”) pseudo-tensor$µ

ν
ρ

as given by

ρµ
ν
ρ
= ηνσ ιAρ∇̄µιAσ = −ρµρν , $µ

ν
ρ
= ⊥νσ λX

ρ∇̄µλX
σ = −$µρ

ν , (11)

together with their mixed analogueKµν
ρ which is obtainable in a pair of equivalent

alternative forms given by

Kµν
ρ = ⊥ρσ ιAν∇̄µιAσ = −ησ ν λX

ρ∇̄µλX
σ . (12)

The reason for qualifying the fields (11) as “pseudo-tensors” is that although
they are tensorial in the ordinary sense with respect to changes of the background
coordinatesxµ they are not geometrically well defined just by the geometry of
the worldsheet but are gauge dependent in the sense of being functions of the
choice of the internal and external framesιAµ andλX

µ. The gauge dependence
of ρµνρ and$µ

ν
ρ

means that both of them can be set to zero at any chosen
point on the worldsheet by choice of the relevant frames in its vicinity. However,
the condition for it to be possible to set these pseudo-tensors to zero through-
out an open neigborhood is the vanishing of the curvatures of the corresponding
frame bundles as characterized with respect to the respective invariance subgroups
SO(1,d − 1) and SO(n− d) into which the full Lorentz invariance group
SO(1,n− 1) is broken by the specification of thed-dimensional worldsheet ori-
entation. The inner curvature that needs to vanish for it to be possible forρµ

ν
ρ

to
be set to zero in an open neighborhood is of Riemannian type, and is obtainable
(by a calculation of the type originally developed by Cartan that was made familiar
to physicists by Yang Mills theory) as (Carter, 1992a)

Rκλµν = 2ηµση
τ
µη

π
[λ∇̄κ]ρπ

σ
τ + 2ρ[κ

µπρλ]πν , (13)

while the outer curvature that needs to vanish for it to be possible for the “twist”
tensor$µ

ν
ρ

to be set to zero in an open neighborhood is of a less familiar type
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that is given (Carter, 1992a) by

Äκλ
µ
ν = 2⊥µσ⊥τ µ ηπ [λ∇̄κ]$π

σ
τ + 2$[κ

µπ$λ]πν. (14)

The frame gauge invariance of the expressions (13) and (14)—which means that
Rκλµν andÄκλµν are unambiguously well defined as tensors in the strictest sense
of the word—is not immediately obvious from the foregoing formulae, but it is
made manifest in the the alternative expressions given in section 6.

4. THE SECOND FUNDAMENTAL TENSOR

Another, even more fundamentally important, gauge invariance property that
is not immediately obvious from the traditional approach—as recapitulated in the
preceeding section is—that of the entityKµν

ρ defined by the mixed analogue (12)
of (11), which (unlikeρµνρ and$µ

ν
ρ
, but like Rκλµν andÄκλµν) is in fact a

geometrically well defined tensor in the strict sense. To see that the formula (12)
does indeed give a result that is frame gauge independent, it suffices to verify that
it agrees with the alternative—manifestly gauge independent definition (Carter,
1990)

Kµν
ρ def= ησ ν∇̄µηρσ . (15)

whereby the entity that we refer to as the second fundamental tensor is constructed
directly from the the first fundamental tensorηµν as given by (6).

Since this second fundamental tensor,Kµν
ρ will play a very important role

throughout the work that follows, it is worthwhile to linger over its essential prop-
erties. To start with it is to be noticed that a formula of the form (15) could of
course be meaningfully applied not only to the fundamental projection tensor of
a d-surface, but also to any (smooth) field of rank-d projection operatorsηµν
as specified by a field of arbitrarily orientatedd-surface elements. What dis-
tinguishes the integrable case, i.e., that in which the elements mesh together
to form a well-definedd-surface through the point under consideration, is the
condition that the tensor defined by (15) should also satisfy the Weingarten
identity

K [µν]
ρ = 0 (16)

(where the square brackets denote antisymmetrization), this symmetry property
of the second fundamental tensor being derivable (Carter, 1990, 1992a) as a ver-
sion of the well known Frobenius theorem. In addition to this nontrivial symmetry
property, the second fundamental tensor is also obviously tangential on the first
two indices and almost as obviously orthogonal on the last, i.e.,

⊥σ µ K σν
ρ = Kµν

σ ησ
ρ = 0. (17)



P1: GCR/FNV P2: FOM

International Journal of Theoretical Physics [ijtp] PP238-343980 November 7, 2001 7:42 Style file version Nov. 19th, 1999

Essentials of Classical Brane Dynamics 2105

The second fundamental tensorKµν
ρ has the property of fully determining the

tangential derivatives of the first fundamental tensorηµν by the formula

∇̄µηνρ = 2 Kµ(νρ) (18)

(using round brackets to denote symmetrization) and it can be seen to be charac-
terizable by the condition that the orthogonal projection of the acceleration of any
tangential unit vector fielduµ will be given by

uµuν Kµν
ρ = ⊥ρµ u̇µ, u̇µ = uν∇ν uµ. (19)

In cases for which we need to use thed-index surface element pseudo-tensor
Eµ...σ given for thed-dimensional worldsheet of thep-brane by (3), it will be
useful to have the relevant surface derivative formula which takes the form

∇̄λEµ...σ = (−1)p(p+ 1)Eν[µ...K λν
σ ] , (20)

in which it is to be recalled thatp = d − 1. (This expression corrects what is,
as far as I am aware, the only wrongly printed formula in the more complete
analysis (Carter, 1992a) on which this presentation is based: the factor (−1)p was
inadvertently omitted in the relevant formula (B9), which is thus valid as printed
only for a worldsheet of odd dimensiond = p+ 1.)

5. EXTRINSIC CURVATURE VECTOR
AND CONFORMATION TENSOR

It is very practical for a great many purposes to introduce the extrinsic cur-
vature vectorKµ, defined as the trace of the second fundamental tensor, which is
automatically orthogonal to the worldsheet,

Kµ def= K ν
ν
µ, ηµν K ν = 0. (21)

It is useful for many specific purposes to work this out in terms of the intrin-
sic metricγij and its determinant|γ |. It suffices to use the simple expression
∇̄µϕ = γ i j xµ,iϕ, j for the tangentially projected gradient of a scalar fieldϕ on
the worldsheet, but for a tensorial field (unless one is using Minkowski coordi-
nates in a flat spacetime) there will also be contributions involving the background
Riemann–Christoffel connection

0µ
ν
ρ
= gνσ

(
gσ (µ,ρ) − 1

2 gµρ ,σ

)
. (22)

The curvature vector is thus obtained in explicit detail as

K ν = ∇̄µηµν = 1√‖γ ‖
(√‖γ ‖γ i j xν ,i

)
, j
+ γ i j xµ,i x

ρ
, j0µ

ν
ρ
. (23)
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This last expression is technically useful for certain specific computational pur-
poses, but it must be remarked that much of the literature on cosmic string dy-
namics has been made unnecessarily heavy to read by a tradition of working all
the time with long strings of nontensorial terms such as those on the right of
(23) rather than taking advantage of such more succinct tensorial expressions as
the preceeding formulā∇µηµν . As an alternative to the universally applicable
tensorial approach advocated here, there is of course another more commonly
used method of achieving succinctness in particular circumstances, which is to
sacrifice gauge covariance by using specialized kinds of coordinate system. In
particular for the case of a string, i.e. for a 2-dimensional worldsheet, it is stan-
dard practise to use conformal coordinatesσ 0 and σ 1 so that the correspond-
ing tangent vectorṡxµ = xµ,0 andx′µ = xµ,1 satisfy the restrictionṡxµx′µ = 0,
ẋµ ẋµ + x′µx′µ = 0, which implies

√‖γ ‖ = x′µx′µ = −ẋµ ẋµ so that (23) simply
gives

√‖γ ‖ K ν = x′′ν − ẍν + (x′µx′ρ − ẋµ ẋρ)0µνρ .
The physical specification of the extrinsic curvature vector (21) for a timelike

d-surface in a dynamic theory provides what can be taken as the equations of
extrinsic motion of thed-surface (Carter, 1990, 1992b), the simplest possibility
being the “harmonic” conditionKµ = 0 that is obtained (as will be shown in the
following sections) from a surface measure variational principle such as that of the
Dirac membrane model (Dirac, 1962), or of the Goto–Nambu string model (Kibble,
1976) whose dynamic equations in a flat background are therefore expressible with
respect to a standard conformal gauge in the familiar formx′′µ − ẍµ = 0.

There is a certain analogy between the Einstein vacuum equations, which
impose the vanishing of the traceRµν of the background spacetime curvature
Rλµρν , and the Dirac–Gotu–Nambu equations, which impose the vanishing of the
traceK ν of the second fundamental tensorK λµ

ν . Just as it is useful to separate out
the Weyl tensor (Schouten, 1954), i.e., the trace free part of the Ricci background
curvature which is the only part that remains when the Einstein vacuum equations
are satisfied, so also analogously, it is useful to separate out the trace free part of
the second fundamental tensor, namely the extrinsic conformation tensor (Carter,
1992a), which is the only part that remains when equations of motion of the Dirac–
Goto–Nambu type are satisfied. Explicitly, the trace free extrinsic conformation
tensorCµν

ρ of a d-dimensional imbedding is defined (Carter, 1992a) in terms of
the corresponding first and second fundamental tensorsηµν andKµν

ρ as

Cµν
ρ def= Kµν

ρ − 1

d
ηµνK ρ , Cν

ν
µ = 0. (24)

Like the Weyl tensorWλµ
ρ
ν

of the background metric (whose definition is given
implicitly by (29) below) this conformation tensor has the noteworthy property of
being invariant with respect to conformal modifications of the background metric:

gµν 7→ e2α gµν ,⇒ Kµν
ρ 7→ Kµν

ρ + ηµν⊥ρσ∇σα, Cµν
ρ 7→ Cµν

ρ. (25)
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This formula is useful (Carteret al., 1994) for calculations of the kind undertaken
by Vilenkin (1991) in a standard Robertson–Walker type cosmological back-
ground, which can be obtained from a flat auxiliary spacetime metric by a confor-
mal transformation for whicheα is a time dependent Hubble expansion factor.

6. THE CODAZZI, GAUSS, AND SCHOUTEN IDENTITIES

As the higher order analogue of (15) we can go on to introduce the third
fundamental tensor (Carter, 1990) as

4λµν
ρ def= ησ µητ ν⊥ρα∇̄λ K στ

α, (26)

which by construction is obviously symmetric between the second and third indices
and tangential on all the first three indices. In a spacetime background that is flat
(or of constant curvature as is the case for the DeSitter universe model) this third
fundamental tensor is fully symmetric over all the first three indices by what
is interpretable as the generalized Codazzi identity which is expressible (Carter,
1992a) in a background with arbitrary Riemann curvatureRλµρσ as

4λµν
ρ = 4(λµν)

ρ + 2
3η

σ
λη
τ

(µη
α
ν)Rστ βα⊥ρβ (27)

It is to be noted that a script symbolR is used here in order to distinguish the
(n-dimensional) background Riemann curvature tensor from the intrinsic curvature
tensor (13) of the (d-dimensional) worldsheet to which the ordinary symbolR has
already allocated.

For many of the applications that will follow it will be sufficient just to treat
the background spacetime as flat, i.e., to takeRστ βα = 0. At this stage however,
we shall allow for an unrestricted background curvature. Forn > 2, this will be
decomposable in terms of its trace free Weyl partWµν

ρ
σ

(which as remarked above
is conformally invariant) and the corresponding background Ricci tensor and its
scalar trace,

Rµν = Rρµρν , R = Rνν , (28)

in the form (Schouten, 1954)

Rµνρσ =Wµν
ρσ + 4

n−2g[ρ
[µRσ ]

ν] − 2
(n−1)(n−2)R g[ρ

[µgσ ]
ν] , (29)

(in which the Weyl contribution can be nonzero only forn ≥ 4). In terms of the tan-
gential projection of this background curvature, one can evaluate the corresponding
internal curvature tensor (13) in the form

Rµνρσ = 2 K ρ
[µ
τ K ν]στ + ηκµηλνRκλατ ηραητ σ , (30)

which is the translation into the present scheme of what is well known in other
schemes as the generalized Gauss identity. The much less well known analogue
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for the (identically trace free and conformally invariant) outer curvature (14) (for
which the most historically appropriate name might be argued to be that of Schouten
(1954) is given (Carter, 1992a) in terms of the corresponding projection of the
background Weyl tensor by the expression

Äµν
ρ
σ
= 2C[µ

τρCν]τσ + ηκµηλνWκλ
α
τ ⊥ρα⊥τ α. (31)

It follows from this last identity that in a background that is flat or conformally
flat (for which it is necessary, and forn ≥ 4 sufficient, that the Weyl tensor should
vanish) the vanishing of the extrinsic conformation tensorCµν

ρ will be suffi-
cient (independently of the behavior of the extrinsic curvature vectorKµ) for
vanishing of the outer curvature tensorÄµνρσ , which is the condition for it to be
possible to construct fields of vectorsλµ orthogonal to the surface and such as
to satisfy the generalized Fermi–Walker propagation condition to the effect that
⊥ρµ ∇̄νλρ should vanish. It can also be shown (Carter, 1992a) (taking special
trouble for the cased = 3) that in a conformally flat background (of arbitrary
dimensionn) the vanishing of the conformation tensorCµν

ρ is always sufficient
(though by no means necessary) for conformal flatness of the induced geometry
in the imbedding.

7. THE INTERNAL RICCI AND CONFORMAL CURVATURES

The conclusion of the preceding paragraph is an illustration of the critically
significant role of the conformation tensorCµν

ρ of an imbedding when the back-
ground is conformally flat, which suggests that it will be of interest to make a closer
examination of its role with respect to the inner curvature,Rκλµν and more partic-
ularly of its tensorially irreducible parts, in this conformally flat case, for which
the condition that the background Weyl tensor should vanish is necessary—and for
n ≥ 4 also sufficient (Schouten, 1954)—while when the background dimension
is n = 3, this condition, namelyWκλ

µ
ν = 0, will hold in any case as an identity.

This restriction is of course compatible with all the most common kinds of appli-
cation, in which the background is taken to be not just conformally flat, but flat
in the strong sense, which is justifiable at least as a very good approximation in a
very wide range of circumstances in which the characteristic length scales of the
imbedding will be small compared with those of the background curvature if any.
Although it is unnecessary for such cases, we shall nevertheless retain allowance
for the possibility of a nonzero background Ricci tensorRµν in the formulae that
follows since the extra complication involved thereby is only very moderate (com-
pared with what would result if allowance for a nonzero background Weyl tensor
were also included).

Leaving aside the trivial (always locally conformally flat) case of a
2-dimensional background, the generalized Gauss relation (30) reduces to
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the form

Rκλµν =
2

n− 2

(
η[κ

µηλ]
ρην

ρ − ην[κηλ]
ρηµσ

) (
Rρσ − R

2(n− 1)
gρσ

)
+ 2K [κ

µσ K λ]νσ + ηκρηλσWρσ
τ

vη
µ
τη

v
ν , (32)

in which the last term evidently drops out whenever the background Weyl tensor
vanishes. Proceeding from this formula by contraction, the internal Ricci tensor is
obtained in terms of the irreducible partsK ρ andCλµ

ν of the second fundamental
tensorKµν

ρ in the form

Rµν = p− 2

n− 2
ηµ

ρην
σ Rρσ + 1

n− 2

(
ηρσRρσ − p− 1

n− 1
R
)
ηµν

+ p− 1

p2
K σ K σ ηµν + p− 2

p
Cµν

σ K σ − Cµ
ρσCνρσ +Wµν , (33)

where the final background Weyl contribution, if any, is given by the expressions

Wµν = ηµσ ηνκWρσ
τ
κ
ηρτ = −ηµσ ηνκWρσ

τ
κ
⊥ρτ , (34)

of which the last version is obtained as a consequence of the tracelessness of the
Weyl tensor.

The corresponding Ricci scalar for the internal geometry (whose surface
integral in the special casep = 2 gives the ordinary Gauss Bonnet type invariant
that was mentioned at the end of section 8) is thus finally obtained in the form

R= p− 1

n− 2

(
2ηρσRρσ − p

n− 1
R
)
+ p− 1

p
K σ K σ − Cλµ

ν Cλµ
ν +W, (35)

(which corrects a transcription error whereby a factor of two was omitted in the
original version (Carter, 1992a) where the final Weyl contribution is just the trace

W =Wν
ν = ησνWρσ

ρ
ν
ηντ = ⊥σνWρσ

ρ
ν
⊥ντ , (36)

which can be seen to vanish identically unless both the dimension and the codimen-
sion of the worldsheet are greater than one, i.e., unless bothp ≥ 2 andn− p ≥ 2.

For cases in which the imbedded surface has dimensionp ≤ 3, as must always
be the case in an ordinary 4-dimensional spacetime background, the specification
of the Ricci contribution provides all that is needed to specify the complete inner
curvature tensor. However, to fully specifyRκλµν in higher dimensional cases for
which the imbedded surface has dimensionp ≥ 4, it will also be necessary to
take account of the generically nonzero conformal curvature termCκλµν that will
contribute to the total as given by the internal analogue of (29), namely

Rµνρσ = Cµνρσ + 4
p−2η

[ρ
[µ Rσ ]

ν] − 2
(p−1)(p−2) Rη

[ρ
[µ η

σ ]
ν] . (37)
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The rather greater algebraic effort required to work out this inner conformal
curvature contribution is rewarded by the qualitatively tidy form of the result, which
(in contrast with the miscellaneous form of the terms assembled in (7) and (35)
is homogeneously quadratic in the conformation tensor alone, the contributions
of the trace vectorKµ and of the background Ricci tensorRµν again (as in (31))
being found to miraculously cancel out altogether, leaving

Cκλµν = 2C[κ
µσ Cλ]

ν
σ − 4

p−2

(
Cρ[µ

ση
ν]

[κ Cλ]ρ
σ + η[κ

[µWλ]
ν]
)

− 2
(p−2)(p−1)η[κ

µ ηλ]
ν
(
Cρσ

τ Cρσ
τ −W

)
+ ηκρ ηλσ Wρσ

τ
vη
µ
τη

vν . (38)

We can thus draw the memorable conclusion that in a conformally flat background
the vanishing of the conformation tensorCµν

ρ is a sufficient condition not only for
(local) outer flatness but also for (local) internal conformal flatness, at least for an
imbedded surface with dimensionp ≥ 4. With a little more work (Carter, 1992a)
it can be shown that this conclusion also holds forp = 3, while it is trivial for the
case of a string worldsheetp = 2, which is always (locally) conformally flat.

8. THE SPECIAL CASE OF A STRING WORLDSHEET
IN 4-DIMENSIONS

The application with which we shall mainly be concerned in the following
work will be the cased = 2 of a string. An orthonormal tangent frame will consist
in this case just of a timelike unit vector,ι0µ, and a spacelike unit vector,ι1µ,
whose exterior product vector is the frame independent antisymmetric unit surface
element tensor

Eµν = 2ι0
[µι1

ν] = 2(−|γ |)−1/2 x[µ
,0 xν]

,1, (39)

whose tangential gradient satisfies

∇̄λEµν = −2 K λρ
[µEν]ρ. (40)

In this case the inner rotation pseudo-tensor (11) is determined just by a corre-
sponding rotation covectorρµ according to the specification

ρλ
µ
ν = 1

2E
µ
νρλ, ρλ = ρλµνEνµ. (41)

This can be used to see from (13) that the Ricci scalar,

R= Rνν Rµν = Rρµρν , (42)
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of the 2-dimensional worldsheet will have the well known property of being a pure
surface divergence, albeit of a frame gauge dependent quantity:

R= ∇̄µ(Eµν ρν). (43)

In the specially important case of a string in ordinary 4-dimensional spacetime,
i.e. when we have not onlyd = 2 but alson = 4, the antisymmetric background
measure tensorελµνρ can be used to determine a scalar (or more strictly, since its
sign is orientation dependent, a pseudo-scalar) magnitudeÄ for the outer curvature
tensor (14) (despite the fact that its traces are identically zero) according to the
specification

Ä = 1
2Äλµνρ ε

λµνρ. (44)

Under these circumstances one can also define a “twist” covector$µ, that is the
outer analogue ofρµ, according to the specification

$ν = 1
2$ν

µλ ελµρσ Eρσ . (45)

This can be used to deduce from (14) that the outer curvature (pseudo) scalarÄ

of a string worldsheet in 4-dimensions has a divergence property of the same kind
as that of its more widely known Ricci analogue (43), the corresponding formula
being given by

Ä = ∇̄µ(Eµν$ν). (46)

It is to be remarked that for a compact spacelike 2-surface the integral of (40) gives
the well known Gauss–Bonnet invariant, but that the timelike string worldsheets
under consideration here will not be characterized by any such global invariant
since they will not be compact (being open in the time direction even for a loop that
is closed in the special sense). The outer analogue of the Gauss–Bonnet invariant
that arises from (44) for a spacelike 2-surface has been discussed by Penrose
and Rindler (1984) but again there is no corresponding global invariant in the
necessarily noncompact timelike case of a string worldsheet.

9. REGULAR AND DISTRIBUTIONAL FORMULATIONS
OF BRANE ACTION

The termp-brane has come into use (Ach´ucarroet al., 1987; Bars and Pope,
1988) to describe a dynamic system localized on a timelike support surface of
dimensiond = p+ 1, imbedded in a spacetime background of dimensionn > p.
Thus at the low dimensional extreme one has the example of a zero-brane, meaning
what is commonly referred to as a “point particle,” and of a 1-brane, meaning what
is commonly referred to as a “string.” At the high dimensional extreme one has the
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“improper” case of an (n− 1)-brane, meaning what is commonly referred to as a
“medium” (as exemplified by a simple fluid), and of an (n− 2)-brane, meaning
what is commonly referred to as a “membrane” (from which the generic term
“brane” is derived). A membrane (as exemplified by a cosmological domain wall)
has the special feature of being supported by a hypersurface, and so being able
to form a boundary between separate background space time regions; this means
that a 2-brane has the status of being a membrane in ordinary 4-dimensional
spacetime (withn = 4) but not in a higher dimensional (e.g., Kaluza–Klein type)
background.

The purpose of the present section is to consider the dynamics not just of an
individual brane but of a brane complex or “rigging model” (Carter, 1990) such
as is illustrated by the nautical archetype in which the wind—a 3-brane—acts on
a boat’s sail—a 2-brane—that is held in place by cords—1-branes—which meet
at knots, shackles, and pulley blocks that are macroscopically describable as point
particles—i.e., 0-branes. In order for a set of branes of diverse dimensions to qualify
as a “geometrically regular” brane complex or “rigging system” it is required
not only that the support surface of each (d − 1)-brane should be a smoothly
imbeddedd-dimensional timelike hyper-surface but also that its boundary, if any,
should consist of a disjoint union of support surfaces of an attatched subset of
lower dimensional branes of the complex. (For example in order qualify as part
of a regular brane complex the edge of a boat’s sail cannot be allowed to flap
freely but must be attatched to a hem cord belonging to the complex.) For the
brane complex to qualify as regular in the strong dynamic sense that will be
postulated in the present work, it is also required that a memberp-brane can exert
a direct force only on an attached (p− 1)-brane on its boundary or on an attached
(p+ 1)-brane on whose boundary it is itself located, though it may be passively
subject to forces exerted by a higher dimensional background field. For instance
the Peccei–Quin axion model gives rise to field configurations representable as
regular complexes of domain walls attached to strings (Shellard, 1990; Sikivie,
1982; Vilenkin, 1982), and a bounded (topological or other) Higgs vortex defect
terminated by a pair of pole defects (Copelandet al., 1988; Manton, 1983; Martin,
1996; Nambu, 1977; Vachaspati and Ach´ucarro, 1991; Vachaspati and Barriola,
1992) may be represented as a regular brane complex consisting of a finite cosmic
string with a pair of point particles at its ends, in an approximation neglecting
Higgs field radiation. (However, allowance for radiation would require the use
of an extended complex including the Higgs medium whose interaction with the
string—and a fortiori with the terminating particles—would violate the regularity
condition: the ensuing singularities in the back reaction would need to be treated by
a renormalization procedure of a kind (Battye and Shellard, 1995, 1996; Dabholkar
and Quashnock, 1990; Shellard, 1990) whose development so far has been beset
with difficulties in preserving exact local Lorentz invariance, an awkward problem
that is beyond the scope of the present paper.
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The present section will be restricted to the case of a brane complex that is
not only regular in the sense of the preceeding paragraph but that is also pure
(or “fine”) in the sense that the lengthscales characterizing the internal structure
of the (defect or other) localized phenomenon represented by the brane models
are short compared with those characterizing the macroscopic variations under
consideration so that polarization effects play no role. For instance in the case
of a point particle, the restriction that it should be describable as a “pure” zero
brane simply means that it can be represented as a simple monopole without any
dipole or higher multipole effects. In the case of a cosmic string the use of a “pure”
1-brane description requires that the underlying vortex defect be sufficiently thin
compared not only with its total length but also compared with the lengthscales
characterizing its curvature and the gradients of any currents it may be carrying.
The effect of the simplest kind of curvature corrections beyond this “pure brane”
limit has been considered by several authors for strings (Gregory, 1988, 1993;
Maeda and Turok, 1988; Polyakov, 1986), domain walls (Barrab`eset al., 1994;
Carter and Gregory, 1995; Gregoryet al., 1991; Silveira and Maia, 1993), and
more generally (Arodzet al., 1991; Boisseau and Letelier, 1992; Capovilla and
Guven, 1995a; Carter, 1994a; Hartley and Tucker, 1990; Letelier, 1990), but in
the rest of this paper, as in the present section, it will be assumed that the ratio
of microscopic to macroscopic lengthscales is sufficiently small for description in
terms of “pure”p-branes to be adequate.

The present section will not be concerned with the specific details of particular
cases but with the generally valid laws that can be derived as Noether identities
from the postulate that the model is governed by dynamical laws derivable from a
variational principle specified in terms of an action functionI. It is however to be
emphasized that the validity at a macroscopic level of the laws given here is not
restricted to cases represented by macroscopic models of the strictly conservative
type directly governed by a macroscopic variational principle. The laws obtained
here will also be applicable to classical models of dissipative type (e.g., allowing
for resistivity to relative flow by internal currents) as necessary conditions for the
existence of an underlying variational description of the microscopic (quantum)
degrees of freedom that are allowed for merely as entropy in the macroscopically
averaged classical description.

In the case of a brane complex, the total actionI will be given as a sum
of distinct d-surface integrals respectively contributed by the various (d − 1)-
branes of the complex, of which each is supposed to have its own corresponding
Lagrangian surface density scalar(d)L̄ say. Each supportingd-surface will be spec-
ified by a mappingσ 7→ x{σ } giving the local background coordinatesxµ (µ =
0, . . . , n− 1) as functions of local internal coordinatesσ i (i = 0, . . . , d − 1). The
correspondingd-dimensional surface metric tensor(d)γ i j that is induced (in the
manner described in section 2) as the pull back of then-dimensional background
spacetime metricgµν , will determine the natural surface measure,(d)dS, in terms
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of which the total action will be expressible in the form

I =
∑

d

∫
(d)dS (d)L̄, (d)dS =

√
‖(d)γ ‖ ddσ. (47)

As a formal artifice whose use is an unnecessary complication in ordinary dy-
namical calculations but that can be useful for purposes such as the calculation of
radiation, the confined (d-surface supported) but locally regular Lagrangian scalar
fields(d)L̄ can be replaced by corresponding unconfined, so no longer regular but
distributional fields(d)L̂, in order to allow the the basic multidimensional action
(47) to be represented as a single integral,

I =
∫

dS
∑

d

(d)L̂, dS =
√
‖g‖ dnx. (48)

over then-dimensional background spacetime. In order to do this, it is evident
that for each (d − 1)-brane of the complex the required distributional action con-
tribution (d)L̂must be constructed in terms of the corresponding regulard-surface
density scalar(d)L̄ according to the presecription that is expressible in standard
Dirac notation as

(d)L̂ = ‖g‖−1/2
∫

(d)dS (d)L̄ δn[x − x{σ }]. (49)

10. CURRENT, GENERALIZED VORTICITY,
AND STRESS-ENERGY TENSOR

In the kind of model under consideration, each supportingd-surface is sup-
posed to be endowed with its own independent internal field variables which are
allowed to couple with each other and with their derivatives in the correspond-
ing d-surface Lagrangian contribution(d)L̄, and which are also allowed to couple
into the Lagrangian contribution(d−1)L̄ on any of its attached boundary (d − 1)
surfaces, though—in order not to violate the strong dynamic regularity condition—
they are not allowed to couple into contributions of dimension (d − 2) or lower. As
well as involving its ownd-brane surface fields and those of any (d + 1) brane to
whose boundary it may belong, each contribution(d)L̄may also depend passively
on the fields of a fixed higher dimensional background. Such fields will of course
always include the background spacetime metricgµν itself. Apart from that, the
most commonly relevant kind of background field (the only one allowed for in the
earlier analysis, (Carter, 1990)) is a Maxwellian gauge potentialAµ whose exterior
derivative is the automatically “closed” electromagnetic field,

Fµν = 2∇ [µ Aν] , ∇ [µ Fνρ] = 0. (50)

Although many other possibilities can in principle be envisaged, the most
commonly relevant generalization, to which for the sake of simplicity the following
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analysis will be limited, consists of allowance just for another background field
of the generic Ramond type (of which the ordinary gauge covectorAν is a special
single index case) that is important in wide range of applications including the
kind of cosmic or superfluid defects for which this work is particularly intended,
namely a gauger -form, i.e., an antisymmetric covariantr -index tensor field with
componentsA{r }µν... = A{r }[νµ...] , whose exterior derivative is an automatically
closed physical current (r + 1)-form,

F {r+1}
µνρ... = (r + 1)∇ [µ A{r }νρ...] , ∇ [µ F {r+1}

νρσ ...] = 0. (51)

Just as a Maxwellian gauge tranformation of the formAµ 7→ Aµ +∇µα for an
arbitrary scalarα leaves the electromagnetic field (50) invariant, so analogously
a Kalb–Ramond gauge transformationA{r }µν... 7→ A{r }µν... + r !∇ [µχν...] for an
arbitrary (r − 1)-form χµ... leaves the corresponding current (r + 1)-form (51)
invariant.

An example of the kind that is most common in an ordinary 4-dimensional
spacetime background is that of a Kalb–Ramond field, meaning a 2-index Ra-
mond field with componentsA{2}µν = −A{2}νµ for which the corresponding cur-
rent 3-form F {3}µνρ = ∇µ A{2}νρ +∇ν A{2}ρµ +∇ρ A{2}µν will just be the dual
F {3}µνρ = εµνρσ nσ of an ordinary current vectornµ satisfying a conservation law
of the usual type,∇µnµ = 0. Such a Kalb–Ramond representation can be used to
provide an elegant variational formulation for ordinary perfect fluid theory (Carter,
1994b) and is particularly convenient for setting up “global” string models of vor-
tices both in a simple cosmic axion or Higgs field (Davis and Shellard, 1989b;
Sakellariadou, 1991; Vilenkin, 1987) and in a superfluid (Ben-Ya’acov, 1992)
such as liquid Helium-4.

In accordance with the preceeding considerations, the analysis that follows
will be based on the postulate that the action is covariantly and gauge invariantly
determined by specifying each scalar Lagrangian contribution(d)L̄ as a function
just of the background fields,Aµ, A{r }µν... and of coursegµν , and of any rele-
vant internal fields (which in the simplest nontrivial case—exemplied by string
models (Carter, 1989a; Larsen, 1993) of the category needed for the macroscopic
description of Witten type (Witten, 1985) superconducting vortices—consist just
of a phase scalarϕ). In accordance with the restriction that the branes be “pure” or
“fine” in the sense explained above, it is postulated that polarization effects are ex-
cluded by ruling out couplings involving gradients of the background fields. This
means that the effect of making arbitrary infinitesimal “Lagrangian” variations
δ
L

Aµ, δ
L

A{r }µν..., δ
L

gµν of the background fields will be to incduce a correspond-
ing variationδI of the action that simply has the form

δI =
∑

d

∫
(d)dS

{
(d) j̄ µ δ

L
Aµ + 1

r !
(d) j̄ {r }µν... δ

L
A{r }µν... + 1

2
(d) T̄µν

δ
L

gµν

}
,

(52)
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provided either that the relevant independent internal field components are fixed or
else that the internal dynamic equations of motion are satisfied in accordance with
the variational principle stipulating that variations of the relevant independent field
variables should make no difference. For eachd-brane of the complex, as well as
the surface stress momentum energy density tensor(d) T̄µν = (d) T̄νµ, this partial
differentiation formula also implicity specifies the corresponding electromagnetic
surface current density vector(d) j̄ µ, and the (antisymmetric) surface fluxr -vector
(d) j̄ {r }µν... = (d) j̄ {r }[µν...] , which is interpretable as vorticity in the 2-index Kalb–
Ramond case. These quantities are formally expressible more explicitly as

(d) j̄ µ = ∂ (d)L̄
∂ Aµ

, (d) j̄ {r }µν... = r !
∂ (d)L̄

∂ A{r }µν...
, (53)

and

(d) T̄µν = 2
∂ (d)L̄
∂ gµν

+ (d)L̄ (d)ηµν , (54)

of which the latter is obtained using the formula

δ
L
((d)dS) = 1

2
(d)ηµν (δ

L
gµν) (d)dS, (55)

where(d)ηµν is the rank-d fundamental tensor of thed-dimensional imbedding, as
defined in the manner described in the preceeding section.

11. CONSERVATION OF CURRENT
AND GENERALIZED VORTICITY

The condition that the action be gauge invariant means that if one simply
setsδ

L
Aµ = ∇µα, δ

L
A{r }µν... = r !∇ [µχν...] , dL gµν = 0, for arbitrarily chosenα and

χµ... thenδI should simply vanish, i.e.,∑
d

∫
d (d) S̄

{
(d) j̄ µ∇µα + (d) j̄ {r }µν...∇µχν...

} = 0. (56)

In order for this to be able to hold for an arbitrary scalar fieldα and an arbitrary
(r − 1) form χµ it is evident that the surface current(d) j̄ µ and the (generalized
vorticity) flux r -vector (d) j̄ {r }µν... must (as one would anyway expect from the
consideration that they depend just on the relevant internald-surface fields) be
purelyd-surface tangential, i.e., their contractions with the relevant rank (n− d)
orthogonal projector(d)⊥µν = gµν − (d)ηµν must vanish:

(d)⊥µν (d) j̄ ν = 0, (d)⊥µν (d) j̄ {r }νρ... = 0. (57)

Hence, decomposing the full gradient operator∇µ as the sum of its tangentially
projected part(d)∇̄µ = (d)ηνµ∇ν and of its orthogonally projected part(d)⊥νµ∇µ,
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and noting that by (57) the latter will give no contribution, one sees that (56) will
take the form ∑

d

∫
(d)dS

{
(d)∇̄µ

(
(d) j̄ µα + (d) j̄ {r }µν...χν...

)
− α (d)∇̄µ j̄ µ − χν... (d)∇̄µ (d) j̄ {r }µν...

} = 0, (58)

in which first term of each integrand is a pure surface divergence. Such a divergence
can be dealt with using Green’s theorem, according to which, for anyd-dimensional
support surface(d) S̄ of a (d − 1)-brane, one has the identity∫

(d)dS (d)∇̄µ (d) j̄ µ =
∮

(d−1)dS (d)λµ (d) j̄ µ, (59)

where is integral on the right is taken over the boundary (d − 1)-surface∂ (d) S̄ of
(d) S̄, and(d)λµ is the (uniquely defined) unit tangent vector on thed-surface that is
directed normally outwards at its (d − 1)-dimensional boundary. Bearing in mind
that a membrane support hypersurface can belong to the boundary of two distinct
media, and that ford ≤ n− 3 ad-brane may belong to a common boundary joining
three or more distinct (d + 1)-branes of the complex under consideration, one sees
that (58) is equivalent to the condition∑

p

∫
(p)dS

{
α

(
(p)∇̄µ (p) j̄ µ −

∑
d=p+1

(d)λµ (d) j̄ µ
)

+χν...
(

(p)∇̄µ (p) j̄ {r }µν... −
∑

d=p+1

(d)λµ (d) j̄ {r }µν...
)}
= 0, (60)

where, for a particularp-dimensionally supported (p− 1)-brane, the summa-
tion “over d = p+ 1” is to be understood as consisting of a contribution from
each (p+ 1)-dimensionally supportedp-brane attached to it, where for each such
p-brane,(d)λµ denotes the (uniquely defined) unit tangent vector on its (p+ 1)-
dimensional support surface that is directed normally towards thep-dimensional
support surface of the boundary (p− 1)-brane. The Maxwell gauge invariance
requirement to the effect that (60) should hold for arbitraryα can be seen to entail
an electromagnetic charge conservation law of the form

(p)∇̄µ (p) j̄ µ =
∑

d=p+1

(d)λµ (d) j̄ µ. (61)

This can be seen from (59) to be interpretable as meaning that the total charge
flowing out of particular (d − 1)-brane from its boundary is balanced by the total
charge flowing into it from anyd-branes to which it may be attached. The anal-
ogous Ramond gauge invariance requirement that (60) should also hold for an
arbitrary (r − 1)-formχµ... can be seen to entail a corresponding (vorticity) flux
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conservation law of the form

(p)∇̄µ (p) j̄ {r }µν... =
∑

d=p+1

(d)λµ (d) j̄ {r }µν.... (62)

A more sophisticated but less practical way of deriving the foregoing conservation
laws would be to work not from the expression (47) in terms of ordinary surface
integrals but instead to use the superficially simpler expression (48) in terms of
destributions, which leads to the replacement of (61) by the ultimately equivalent
(more formally obvious but less directly meaningful) expression

∇µ
(∑

d

(d) ĵ µ
)
= 0 (63)

involving the no longer regular but Dirac distributional current(d) ĵ µ that is given
in terms of the corresponding regular surface current(d) j̄ µ by

(d) ĵ µ = ‖g‖−1/2
∫

(d)dS (d) j̄ µ δn[x − x{σ }]. (64)

Similarly one can if one wishes rewrite the flux conservation law (62) in the
distributional form

∇µ
(∑

(d) ĵ {r }µν...
)
= 0, (65)

where the distributional (generalized vorticity) flux(d) ĵ {r }µν... is given in terms of
the corresponding regular surface flux(d) j̄ {r }µν... by

(d) ĵ {r }µν... = ‖g‖−1/2
∫

(d)dS (d) j̄ {r }µν... δn[x − x{σ }]. (66)

It is left as an entirely optional exercise for any readers who may be adept in
distribution theory to show how the ordinary functional relationships (61) and (62)
can be recovered by integrating out the Dirac distributions in (63) and (65).

12. FORCE AND THE STRESS BALANCE EQUATION

The condition that the hypothetical variations introduced in (52) should be
“Lagrangian” simply means that they are to be understood to be measured with
respect to a reference system that is comoving with the various branes under con-
sideration, so that their localization with respect to it remains fixed. This condition
is necessary for the variation to be meaningly definable at all for a field whose
support is confined to a particular brane locus, but in the case of an unrestricted
background field one can envisage the alternative possibility of an “Eulerian”
variation, meaning one defined with respect to a reference system that is fixed
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in advance, independently of the localization of the brane complex, the standard
example being that of a Minkowski reference system in the case of a background
that is flat. In such a case the relation between the more generally meaningful
Lagrangian (comoving) variation, denoted byδ

L
, and the corresponding Eulerian

(fixed point) variation denoted byδ
E

say will be given by Lie differentiation with
respect to the vector fieldξµ say that specifies the infinitesimal of the comoving
reference system with respect to the fixed background, i.e., one has

δ
L
− δ

E
= Eξ ---L, (67)

where the Lie differentiation operatorEξ ---L is given for the background fields under
consideration here by

Eξ ---L Aµ = ξσ∇σ Aµ + Aσ ∇µξσ , (68)

Eξ ---L A{r }µν... = ξσ∇σ A{r }µν + r ! A{r }σ [ν...∇µ]ξ
σ , (69)

Eξ ---L gµν = 2∇(µξν). (70)

This brings us to the main point of this section which is the derivation of the
dynamic equations governing the extrinsic motion of the branes of the complex,
which are obtained from the variational principle to the effect that the actionI
is left invariant not only by infinitesimal variations of the relevant independent
intrinsic fields on the support surfaces but also by infinitesimal displacement of
the support surfaces themselves. Since the background fieldsAµ, A{r }µν..., and
gµν are to be considered as fixed, the relevant Eulerian variations simply vanish,
and so the resulting Lagrangian variations will be directly identifiable with the
corresponding Lie derivatives—as given by (70)—with respect to the generating
vector fieldξµ of the infinitesimal displacement under consideration. The varia-
tional principle governing the equations of extrinsic motion is thus obtained by
setting to zero the result of substituting these Lie derivatives in place of the corre-
sponding Lagrangian variations in the more general variation formula (52), which
gives∑

d

∫
(d)dS

{
(d) j̄ µ Eξ ---L Aµ + 1

r !
(d) j̄ {r }µν... Eξ ---L A{r }µν... + 1

2
(d) T̄µν Eξ ---L gµν

}
= 0.

(71)

The requirement that this should hold for any choice ofξµ evidently implies that
the tangentiality conditions (57) for the surface fluxes(d) j̄ µ and(d) j̄ {r }µν must be
supplemented by an analogousd-surface tangentiality condition for the surface
stress momentum energy tensor(d) T̄µν , which must satisfy

(d)⊥µν (d) T̄νρ = 0. (72)
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(as again one would expect anyway from the consideration that it depends just on
the relevant internald-surface fields). This allows (70) to be written out in the form∑

d

∫
(d)dS

{
ξρ
(

Fρµ
(d) j̄ µ + 1

r !
F {r+1}

ρµν...
(d) j̄ {r }µν... − (d)∇̄µ (d) T̄µ

ρ

− Aρ (d)∇̄µ (d) j̄ µ − 1

(r − 1)!
A{r }ρν... (d)∇̄µ (d) j̄ {r }µν...

)
+ (d)∇̄µ

(
ξρ
(

Aρ (d) j̄ µ + 1

(r − 1)!
A{r }ρν... (d) j̄ {r }µν... + (d) T̄µ

ρ

))}
= 0,

(73)

in which the final contribution is a pure surface divergence that can be dealt with
using Green’s theorem as before. Using the results (61) and (62) of the analysis of
the consequences of gauge invariance and proceeding as in their derivation above,
one sees that the condition for (73) to hold for an arbitrary fieldξµ is that, on each
(p− 1)-brane of the complex, the dynamical equations

(p)∇̄µ (p) T̄µ
ρ = (p) f ρ , (74)

should be satisfied for a total force density(p) f ρ given by

(p) f ρ = (p) f̄ ρ + (p) f̌ ρ , (75)

where(p) f̌ ρ is the contribution of the contact force exerted on thep-surface by
other members of the brane complex, which takes the form

(p) f̌ ρ =
∑

d=p+1

(d)λµ (d) T̄µ
ρ , (76)

while the other force density contribution(p) f̄ ρ represents the effect of the external
background fields, which is given by

(p) f̄ ρ = Fρµ
(p) j̄ µ + 1

r !
F {r+1}

ρµν...
(p) j̄ {r }µν.... (77)

As before, the summation “overd = p+ 1” in (76) is to be understood as consist-
ing of a contribution from each of thep-branes attached to the (p− 1)-brane under
consideration, where for each such attachedp-brane,(d)λµ denotes the (uniquely
defined) unit tangent vector on its (p+ 1)-dimensional support surface that is
directed normally towards thep-dimensional support surface of the boundary
(p− 1)-brane.

The first of the background force contributions in (77) is of course the Lorentz
type force density resulting from the effect of the electromagnetic field on the
surface current. For the case of an ordinary current 3-vectorF {r+1}

ρµν , the other
contribution in (77) will just be the Joukowsky type force density (of the kind
responsible for the lift on an aerofoil) resulting from the Magnus effect, which
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acts in the case of a “global” string (Davis and Shellard, 1989b; Vilenkin and
Vachaspati, 1987) through not in the case of a string of the “local” type for which
the relevant vorticity flux(p) j̄ {r }µν will be zero. As with the conservation laws
(61) and (62), so also the explicit force density balance law expressed by (74)
can alternatively be expressed in terms of the corresponding Dirac distributional
stress momentum energy and background force density tensors,(d)T̂µν and(d) f̂ µ,
which are given for each (d − 1)-brane in terms of the corresponding regular
surface stress momentum energy and background force density tensors(d)T̄µν and
(d) f̄ µ by

(d)T̂µν = ‖g‖−1/2
∫

(d)dS (d) T̄µν δn[x − x{σ }] (78)

and

(d) f̂ µ = ‖g‖−1/2
∫

(d)dS (d) f̄ µ δn[x − x{σ }]. (79)

The equivalent—more formally obvious but less explicitly meaningful—
distributional version of the force balance law (74) takes the form

∇µ
(∑

d

(d)T̂µ
ρ

)
= f̂ ρ , (80)

where the total Dirac distributional force density is given in terms of the electro-
magnetic current distributions (64) and the (generalized vorticity) flux distributions
(66) by

f̂ ρ = Fρµ

∑
d

(d) ĵ µ + 1

r !
F {r+1}

ρµν...

∑
d

(d) ĵ {r }µν.... (81)

It is again left as an optional exercise for readers who are adept in the use of Dirac
distributions to show that the system (74), (76), and (77) is obtainable from (80)
and (81) by substituting (64), (66), (78), and (79).

As an immediate corollary of (74), it is to be noted that for any vector field
`µ that generates a continuous symmetry of the background spacetime metric, i.e.,
for any solution of the Killing equations

∇(µ`ν) = 0, (82)

one can construct a corresponding surface momentum or energy density current

(p)P̄µ = (p)T̄µν`ν , (83)

that will satisfy

(p)∇̄µ (p)P̄µ =
∑

d=p+1

(d)λµ (d)P̄µ + (p) f̄ µkµ. (84)
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In typical applications for which then-dimensional background spacetime can be
taken to be flat there will ben independent translation Killing vectors which alone
(without recourse to the furthern(n− 1)/2 rotation and boost Killing vectors of
the Lorentz algebra) will provide a set of relations of the form (84) that together
provide the same information as that in the full force balance equation (74) or (80).

13. THE EQUATION OF EXTRINSIC MOTION

Rather than the distributional version (80), it is the explicit version (74) of the
force balance law that is directly useful for calculating the dynamic evolution of the
brane support surfaces. Since the relation (80) involvesn independent components
whereas the support surface involved in onlyp-dimensional, there is a certain
redundancy, which results from the fact that if the virtual displacement fieldξµ is
tangential to the surface in question it cannot affect the action. Thus if(p)⊥µν ξν = 0,
the condition (71) will be satisfied as a mere identity—provided of course that
the field equations governing the internal fields of the system are satisfied. It
follows that the nonredundent information governing the extrinsic motion of the
p-dimensional support surface will be given just by the orthogonally projected
part of (74). Integrating by parts, using the fact that, by (7) and (18), the surface
gradient of the rank-(n− p) orthogonal projector(p)⊥µν will be given in terms of
the second fundamental tensor(p) Kµν

ρ of the p-surface by

(p)∇̄µ (p)⊥νρ = −(p) Kµν
ρ − (p) Kµ

ρ
ν
, (85)

it can be seen that the extrinsic equations of motion obtained as the orthogonally
projected part of (74) will finally be expressible by

(p) T̄µν (p) Kµν
ρ = (p)⊥ρµ (p) f µ. (86)

It is to be emphasized that the formal validity of the formula that has just been
derived is not confined to the variational models on which the above derivation is
based, but also extends to dissipative models (involving effects such as external
drag by the background medium (Carteret al., 1994; Garriga and Sakellariadou,
1993; Vilenkin, 1991) or mutual resistance between independent internal cur-
rents). The condition that even a nonconservative macroscopic model should be
compatible with an underlying microscopic model of conservative type requires
the existence (representing to averages of corresponding microscopic quantities)
of appropriate stress momentum energy density and force density fields satisfy-
ing (86).

The ubiquitously applicable formula (86) is interpretable as being just the nat-
ural higher generalization of “Newton’s law” (equating the product of mass with
acceleration to the applied force) in the case of a particle. The surface stress mo-
mentum energy tensor,(p) T̄µν , generalizes the mass, and the second fundamental
tensor,(p) Kµν

ρ , generalizes the acceleration.
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The way this works out in the 1-dimensional case of a “pure” point par-
ticle (i.e., a monopole) of massm, for which the Lagrangian is given simply
by (1)L̄ = −m, is as follows. The 1-dimensional energy tensor will be obtained
in terms of the unit tangent vectoruµ (uµ uµ = −1) as (1)T̄µν = m uµ uν , and
in this zero-brane case, the first fundamental tensor will simply by given by
(1)ηµν = −uµ uν , so that the second fundamental tensor will be obtained in terms of
the acceleratioṅuµ = uν∇ν uµ as(1)Kµν

ρ = uµ uν u̇ρ . Thus (86) can be seen to re-
duce in the case of a particle simply to the usual familiar frommu̇ρ = (1)⊥ρµ (1) f µ.

The familiar electromagnetic example of the Faraday–Lorentz force exerted
on a charged point particle (i.e., a zero-brane) by an ordinary Maxwellian field is
the simplest example of the effect of the important special case of what (in view
of the proverbial complementarity of “brain versus brawn”) may conveniently be
termed the relevant “brawn field.” For a generic (p− 1) brane, with worldsheet
dimensionp, the corresponding brawn field is defined to be a Ramond type gauge
r form A{r }µν... whose index numberr is equal to the worldsheet dimension, i.e.,
for which r = p. In this case the corresponding generalized vorticity flux on the
brane must evidently be given by an expression of the form

j̄ {p}µν... = e{p} (p)Eµν..., (87)

for some proportionality factore{p}. Moreover, provided that this brawn source
flux is confined to thed-dimensional brane worldsheet, so that the right hand side
of the flux conservation law (62) vanishes, this proportionality factor must have
vanishing worldsheet gradient,

(p)∇̄νe{p} = 0, (88)

so thate{p} will have a fixed value. The coefficiente{p} will thus be interpretable as
a brawn charge coupling constant characterizing thep-brane. In particular, for the
case of a zero-brane (i.e., a point particle) the relevant coupling constante{1} will
be interpretable as an ordinary electromagnetic charge. Similarly for a 1-brane
(i.e., a string) the relevant (Wess–Zumino type) coupling constante{2} will be
interpretable as a measure of the relevant. Kalb–Ramond current circulation round
the worldsheet. When the relevant “brawn” field provides the only external force
on the brane the orthogonal projection on the right of (86) will be redundant, and
the equation of extrinsic motion of the worldsheet will reduce to the explicity form

(p) T̄µν (p) Kµνρ = e{p}
p!

F {d}ρσ ... (p)Eρ..., (89)

with d = p+ 1 as before. For the case of a point particle in an electromagnetic
field this is just the usual equation of motion provided by the Faraday Lorentz force,
while for the case of a string surrounded by a Kalb–Ramond current this is just
the equation of motion provided (Carter and Langlois, 1995) by the Joukowski lift
force density that is attributable to the familiar Magnus effect. For the source free
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dynamical equation governing the “brawn field” outside the brane, the simplest
possibility is a divergence equation of the familiar form

∇ρ F {d}ρσ ... = 0, (90)

which applies both to ordinary Maxwellian electromagnetism and to the stan-
dard kind of axion fluid model (Battye and Shellard, 1995, 1996; Carter, 1994b;
Dabholkar and Quashnock, 1990).

The possibility that such an effect occurs for the 3-brane of a “brane world”
scenario has not yet been given much attention, presumably because a nonzero
value for the relevant generalized Wess–Zumino coupling constante{4} would
specify a preferred orientation in the worldsheet (due to the pseudo-tensorial, not
strictly tensorial, nature of the 4-surface alternating tensorEµνρσ ) and hence would
violate theZ2 symmetry that is usually postulated in the 5-dimensional scenar-
ios that are most commonly considered (Binetruyet al., 2000; Bowcocket al.,
2000; Chamblin and Gibbons, 2000; Chamblinet al., 2000; Langloiset al., 2000;
Maartens, 2000; Mennim and Battye, 2000; Shiromizuet al., 2000). However, the
consequences of dropping theZ2 symmetry constraint have recently begun to be
a subject of systematic investigation (Daviset al., 2001, Koganet al., 2000, n.d.).
It therefore seems worthwhile to point out that a generalized Wess–Zumino type
coupling effect of the type characterized by (89) could provide a plausible under-
lying mechanism that, subject to (90), would simulate the effect of a discontinuous
change of the cosmological “constant” of the “bulk,” such as has recently been pos-
tulated in bubble type scenarios (Deruelle and Dolezel, 2000; Perkins, 2001) of this
less orthodoxZ2 symmetry violating kind. For a brane of codimension 1, i.e., when
the backgound dimension isn = d = p+ 1, the external “brawn” fieldF {d+1}

ρσ ...

must evidently be proportional to the background measure tensorερσ ..., with a
proportionality factor that must be uniform over any region where the source free
field equation (90) is satisfied, so that for a (d − 1)-brane in a (d + 1)-dimensional
bulk we shall haveF {d+1}

µν... = F {d+1} εµν... with a “brawn” field pseudo-scalar
F {d+1} that has constant value (giving a stress energy density tensor of the same
form as would arise from a cosmological constant proportional to|F |2) which
will give rise to a force density with uniform magnitude proportional to the prod-
uct e{d} F {d+1}. Thus using the unit normalλµ = (d!)−1 εµν... (d)Eν... (with d = 4
in the usual brane world case) to construct the (symmetric) second fundamental
form (d) Kµν = (d) Kµν

ρλρ , it can be seen that the equation of motion (89) will be
expressible in this case as

(d) T̄µν (d) Kµν = e{d} F {d+1}. (91)

(In a more elaborate treatment allowing for the active role of the brane as a source
for the “brawn” field, this constant producte{d} F {d+1} would need to be replaced
by a constant proportional to the resulting surface discontinuity in (F {d+1})2, and
if self-gravitation were also taken into account then (as will be discussed in more
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detail elsewhere) the tensor(d) Kµν would also be continuous and its value in (91)
would need to be replaced by the mean of its values on the two sides.)

14. PERTURBATIONS AND EXTRINSIC
CHARACTERISTIC EQUATION

Two of the most useful formulae for the analysis of small perturbations
of a string or higher brane worldsheet are the expressions for the infinitesimal
Lagrangian (comoving) variation of the first and second fundamental tensors in
terms of the corresponding comoving variationδ

L
gµν of the metric (with respect

to the comoving reference system). For the first fundamental tensor one easily
obtains

δ
L
ηµν = −ηµρηµσ δ

L
gρσ , δ

L
ηµν = ηµρ⊥σ ν δ

L
gρσ (92)

and, by substituting this in the defining relation (15), the corresponding Lagrangian
variation of the second fundamental tensor is obtained (Carter, 1993) as

δ
L

Kµν
ρ = ⊥ρλησ µητ ν δ

L
0σ

λ
τ +

(
2⊥σ (µ K ν)

τρ − Kµν
σ ητρ

)
δ
L

gστ , (93)

where the Lagrangian variation of the connection (22) is given by the well known
formula

δ
L
0σ

λ
τ = gλρ

(∇ (σ δ
L
gτ )ρ − 1

2∇ρδL gστ
)
. (94)

Since we are concerned here only with cases for which the background is fixed
in advance so that the Eulerian variationdE will vanish in (67), the Lagrangian
variation of the metric will be given just by its Lie derivative with respect to the
infinitesimal displacement vector fieldξµ that generates the displacement of the
worldsheet under consideration, i.e., we shall simply have

δ
L

gστ = 2∇(σ ξ τ ). (95)

It then follows from (94) that the Lagrangian variation of the connection will be
given by

δ
L
0σ

λ
τ = ∇(σ∇τ )ξ

λ −Rλ(στ )ρξ
ρ , (96)

whereRλστρ is the background Riemann curvature (which will be negligible in
typical applications for which the lengthscales characterizing the geometric fea-
tures of interest will be small compared with those characterizing any background
spacetime curvature). The Lagrangian variation of the first fundamental tensor is
thus finally obtained in the form

δ
L
ηµν = −2ησ

(µ∇̄ν)ξσ , (97)
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while that of the second fundamental tensor is found to be given by

δ
L
Kµν

ρ = ⊥ρλ
(∇̄ (µ∇̄ν)ξ

λ − ησ (µη
τ
ν)Rλστρξρ − K σ

(µν)∇̄σ ξλ
)

+ (2⊥σ (µ K ν)τ
ρ − gρτ Kµν

σ
)
(∇σ ξ τ + ∇̄τ ξσ ). (98)

It is instructive to apply the foregoing formulae to the case of a free pure
brane worldsheet, meaning one for which there is no external force contribution
so that the equation of extrinsic motion reduces to the form

T̄µν Kµν
ρ = 0. (99)

On varying the relation (99) using (98) in conjunction with the orthogonality
property (72) and the unperturbed equation (99) itself, the equation governing the
propagation of the infinitesimal displacement vector is obtained in the form

⊥ρλT̄µν
(∇̄µ∇̄νξλ −Rλµνσ ξσ ) = −Kµν

σ
δ
L
T̄µν. (100)

In the simplest case, for which there are no internal fields, (100) constitutes the
complete system of dynamical equations, which take an explicit form (Battye and
Carter, 1995) that can be shown (Battye and Carter, 2000) to be directly obtainable
by application of the variation principle to the second order perturbation of the
relevant Dirac–Goto–Nambu action. However, in the generic case, the extrinsic
perturbation equation (100) will by itself be only part of the complete system of
perturbation equations governing the evolution of the brane, the remaining equa-
tions of the system being those governing the evolution of whatever surface current
(Carter, 1989b) and other relevant internal fields on the supporting worldsheet may
be relevant. The perturbations of such fields are involved in the source term on
the right of (100), whose explicit evaluation depends on the specific form of the
relevant currents or other internal fields. However, it is not necessary to know the
specific form of such internal fields for the purpose just of deriving the charac-
teristic velocities of propagation of the extrinsic propagations represented by the
displacement vectorξµ, so long as they contribute to the source term on the right
of the linearized perturbation equation (100) only at first differential order, so that
the characteristic velocities will be completely determined by the first term on the
left of (100) which will be the only second differential order contribution. It is
apparent from (100) that under these conditions the equation for the characteristic
tangent covectorχµ say will be given independently of any details of the surface
currents or other internal fields simply (Carter, 1990) by

T̄µνχµχν = 0. (101)

(It can be seen that the unperturbed surface stress momentum energy density tensor
T̄µν plays the same role here as that of the unperturbed metric tensorgµν in the
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analogous characteristic equation for the familiar case of a massless background
spacetime field, as exemplified by electromagnetic or gravitational radiation.)
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